МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Самарской области

Центральное управление

ГБОУ ООШ с. Верхнее Санчелеево

РАССМОТРЕНО СОГЛАСОВАНО УТВЕРЖДЕНО

Руководитель МО Советник директора по ВР Директор

Юченкова Е.М. Безроднова Н.П.

Протокол №1 Протокол №1 Приказ №196-од от «23» августа 2024 г. от «23» августа 2024 г. от «23» августа 2024 г.

РАБОЧАЯ ПРОГРАММА КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ

«РОБОТОТЕХНИКА»

(ОСНОВНОЕ ОБЩЕЕ ОБРАЗОВАНИЕ)

8 - 9 классы

ОГЛАВЛЕНИЕ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
УЧЕБНО – ТЕМАТИЧЕСКИЙ ПЛАН	7
Календарно-тематическое планирование курса «Робототехника»	
ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ	
РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ РЕАЛИЗАЦИИ ПРОГРАММЫ	

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Реализация программы технической данной направленности предусматривает использование оборудования, средств обучения воспитания центра «Точка роста».

Рабочая программа внеурочной деятельности «Робототехника (базовый уровень)» предназначена для начинающих и не требует специальных входных знаний.

Существует большое количество проблем, на которые никто не хочет внимания. ДΟ тех пор, пока ситуация не становится катастрофической. Одной из таких проблем в России являются: недостаточная обеспеченность инженерными кадрами и низкий статус инженерного образования. Сейчас необходимо вести популяризацию профессии инженера. Интенсивное использование роботов в быту, на поле требует, пользователи И боя чтобы современными знаниями в области управления роботами, что позволит безопасные более развивать новые, умные, И продвинутые автоматизированные системы. Необходимо прививать интерес учащихся к области робототехники и автоматизированных систем.

Чтобы достичь высокого уровня творческого мышления, дети должны пройти все этапы конструирования. Необходимо помнить, что такие задачи ставятся, когда учащиеся имеют определённый уровень знаний, опыт работы, умения и навыки.

исследователи, войдя В занимательный погружаются в сложную среду информационных технологий, позволяющих роботам выполнять широчайший круг функций.

Робототехника — прикладная наука, занимающаяся разработкой технических систем важнейшей автоматизированных И являющаяся технической основой интенсификации производства. На производстве она является одной из главных технических основ интенсификации. Сегодня человечество практически вплотную подошло к тому моменту, когда роботы будут использоваться во всех сферах жизнедеятельности.

Робототехника включает в себя такие предметы, как конструирование, программирование, алгоритмику, математику, физику и другие дисциплины, связанные с инженерией.

Человечество остро нуждается в роботах, которые могут без помощи оператора тушить пожары, самостоятельно передвигаться по заранее неизвестной, реальной пересеченной местности, выполнять спасательные операции во время стихийных бедствий, аварий атомных электростанций, в борьбе с терроризмом. Кроме того, по мере развития и совершенствования робототехнических устройств возникает необходимость в мобильных роботах, предназначенных для удовлетворения каждодневных потребностей людей: роботах – сиделках, роботах – нянечках, роботах – домработницах, роботах – всевозможных детских и взрослых игрушках и т.д. И уже сейчас в современном производстве и промышленности востребованы специалисты 3 области. знаниями этой Начинать обладающие В

специалистов нужно школе.

Образовательная робототехника способствует эффективному овладению обучающимися универсальными учебными действиями, так как объединяет разные способы деятельности при решении конкретной задачи. Использование конструкторов значительно повышает мотивацию к изучению информатики, физики, математики способствует развитию коллективного мышления и самоконтроля.

Программа рассчитана на использование образовательного набора по электронике, электромеханике и микропроцессорной технике «Конструктор программируемых моделей инженерных систем. Расширенный набор" — очень удачное образовательное решение, которое позволяет, с одной стороны, показать все базовые принципы робототехники, с другой — воплощать в реальности и оживлять свои самые смелые идеи.

К преимуществам набора относятся:

- Надежная конструктивная база, которая позволяет создавать достаточно большие конструкции, которые при этом сохраняют жесткость и прочность.
- Возможность одновременно использовать двенадцать датчиков и двигателей.
- Наличие пульта управления позволяет создавать управляемых роботов.
- Для реализации автономного поведения робота возможно использовать датчики расстояния, цвета, касания и пр.
- В конструкторе используются металлические оси и валы, что значительно расширяет его возможности и повышает точность движений.
- Зубчатые колеса и рейки, шкивы, цепи позволяют изучать широкий перечень механизмов.

При реализации программы у учащихся формируется информационная и алгоритмическая культура, технологическое мышление, формируется представление о роли роботизированных устройств и информационных технологий в жизни людей, в промышленности и научных исследованиях.

Вид программы – модифицированный.

Цель программы: Формирование компетенций, обучающихся в области конструирования, программирования с использованием робототехнических моделей.

Задачи программы:

- 1. Стимулировать мотивацию учащихся к получению знаний помогать формировать творческую личность ребенка.
- 2. Способствовать развитию интереса к технике, конструированию, программированию, высоким технологиям.
- 3. Способствовать развитию конструкторских, инженерных и вычислительных навыков.
 - 4. Развивать мелкую моторику.
 - 5. Способствовать формированию умения достаточно 4

самостоятельно решать технические задачи в процессе конструирования моделей.

Методы обучения.

- 1. Познавательный (восприятие, осмысление и запоминание учащимися нового материала с привлечением наблюдения готовых примеров, моделирования, изучения иллюстраций, восприятия, анализа и обобщения демонстрируемых материалов);
- 2. Метод проектов (при усвоении и творческом применении навыков и умений в процессе разработки собственных моделей)
- 3. Систематизирующий (беседа по теме, составление систематизирующих таблиц, графиков, схем и т.д.)
- 4. Контрольный метод (при выявлении качества усвоения знаний, навыков и умений и их коррекция в процессе выполнения практических заданий)
- 5. Групповая работа (используется при совместной сборке моделей, а также при разработке проектов)

Формы организации учебных занятий.

Среди форм организации учебных занятий в данном курсе выделяются:

- практикум;
- урок-соревнование;
- выставка;
- урок проверки и коррекции знаний и умений.

Система отслеживания и оценивания результатов:

Контроль осуществляется в форме творческих проектов, самостоятельной разработки работ, участие в выставках, показательных выступлениях.

В качестве домашнего задания предлагаются задания для учащихся по сбору и изучению информации по выбранной теме;

- Выяснение технической задачи,
- Определение путей решения технической задачи.

В программе используются следующие уровни освоения программы:

Минимальный уровень - обучающийся не выполнил образовательную программу, нерегулярно посещал занятия.

Базовый уровень - обучающийся стабильно занимается, регулярно посещает занятия, выполняет образовательную программу.

Высокий уровень - обучающийся проявляет устойчивый интерес к занятиям, показывает положительную динамику развития способностей, проявляет инициативу и творчество, демонстрирует достижения.

Программа рассчитана на учащихся 8-9 классов. На реализацию программы «Прикладная робототехника» отводиться 34 часа учебного времени. (1 занятие и 1 час в неделю.). Срок реализации - 1 год. Набор 5

учащихся — свободный. В зависимости от выделенных часов на робототехнику в образовательной организации программа может быть модифицирована на срок реализации 2 года (34 + 34 часов.)

Требования к результатам обучения и воспитания

Личностные результаты обучения:

- формирование познавательных интересов, интеллектуальных и творческих способностей обучающихся;
- формирование целостного мировоззрения, соответствующего современному уровню развития науки и технологий;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
 - проявление технико-технологического мышления при организации своей деятельности;
- мотивация образовательной деятельности обучающихся на основе личностно ориентированного подхода;
- формирование ценностных отношений к себе, учителю, авторам открытий иизобретений, результатам обучения;
- формирование коммуникативной компетентности в процессе проектной, учебно- исследовательской, игровой деятельности.

<u> Метапредметные результаты:</u>

- овладение составляющими исследовательской и проектной деятельности: умение видеть проблему, ставить вопросы, выдвигать гипотезы, давать определения понятиям, классифицировать, наблюдать, проводить эксперименты, делать выводы и заключения, структурировать материал, объяснять, доказывать, защищать свои идеи;
- умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в познавательной деятельности, развивать мотивы и интересы своей деятельности;
- овладение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в познавательной деятельности;
- умение создавать, применять и преобразовывать знаки и символы, модели, схемы для решения учебных и познавательных задач;

- развитие монологической и диалогической речи, умения выражать свои мысли, способности выслушивать педагога, понимать его точку зрения, признавать право другого человека на иное мнение;
- формирование умений представлять и отстаивать свои взгляды иубеждения, вести дискуссию;
- комбинирование известных алгоритмов технического и технологического

творчества в ситуациях, не предполагающих стандартного применения одного из них;

- поиск новых решений возникшей технической или организационной проблемы;
- самостоятельная организация и выполнение различных творческих работ по созданию технических изделий;
- виртуальное и натурное моделирование технических объектовитехнологических процессов с применением робототехнических систем;
- проявление инновационного подхода к решению практических задач впроцессе моделирования изделия или технологического процесса;
- выявление потребностей, проектирование и создание объектов, имеющих потребительную стоимость;
- формирование и развитие компетентности в области использования информационно-коммуникационных технологий.

Предметные результаты обучения:

- умение использовать термины технической области;
- умение конструировать и программировать различные системы, в том числе, использующие интерфейс «Мозг-компьютер»;
- умение использовать готовые прикладные компьютерные программы и сервисы в области робототехники, электроники и программирования, умение работать с описаниями программ и сервисами;
- умение разрабатывать простые программы систем управления техническими объектами с применением робототехнических систем;
- навыки выбора способа представления данных в зависимости от постановленной

задачи;

рациональное использование учебной и дополнительной технической и технологической информации для проектирования и создания

технических объектов;

• владение методами решения организационных и технических задач; владение формами учебно-исследовательской, проектной, игровой деятельности.

Универсальная учебная деятельность (УУД)

- оценка жизненных ситуаций (поступки, явления, события) с точки зрения собственных ощущений, соотносить их с общепринятыми нормами и ценностями;
- оценка (поступков) в предложенных ситуациях, которые можнохарактеризовать как хорошие или плохие;
- описание своих чувств и эмоций от знакомства с предметами технического творчества, изобретениями, уважительно относиться к результатам труда изобретателей и конструкторов, в том числе, в области электроники и робототехники;
- принятие другого мнения и высказывания, уважительное отношение к ним;
- опираясь на освоенные изобретательские и конструкторскотехнологические знания и умения, делать выбор способов реализации предложенного или собственного замысла.

Регулятивные:

- волевая саморегуляция через исследовательскую деятельность;
- умение самостоятельно формулировать цели
 и задачи послепредварительного обсуждения;
- умение с помощью педагога анализировать предложенное задание, отделять известное и неизвестное;
- умение совместно с педагогом выявлять и формулировать учебную проблему;
 - под контролем педагога выполнять пробные поисковые действия

(упражнения) для выявления оптимального решения проблемы (задачи);

- выполнение заданий по составленному под контролем педагога плану, сверять свои действия с ним;
- контроль точности выполнения команд, сформированных с помощью интерфейса

«Мозг-компьютер», программных средств;

проведение итогового контроля общего качества

выполненного задания;

- проверка разработанных систем в действии, внесение необходимых конструктивных доработок и изменений в программное обеспечение (средством формирования этих действий служит технология продуктивной технической творческой деятельности);
- в диалоге с педагогом вырабатывание критериев оценки и определение степени успешности выполнения своей работы.

Познавательные:

- умение отбирать информацию по теме;
- анализ, синтез, систематизация информации при исследовательской деятельности, при проведении опытов;
 - умение выявлять и формулировать проблему;
- искать и отбирать необходимые для решения поставленной педагогом задачи источники информации в текстах, иллюстрациях, схемах, чертежах, инструкционных картах, энциклопедиях, справочниках, Интернете;
- добывать новые знания в процессе наблюдений, рассуждений и обсуждений новых материалов, выполнения пробных поисковых упражнений;
- перерабатывать полученную информацию: сравнивать иклассифицировать факты и явления;
- определять причинно-следственные связи изучаемых технических явлений;
 - делать выводы на основе обобщения полученных знаний;
- преобразовывать информацию: представлять информацию в виде текста, таблицы, схемы (в информационных проектах).

Коммуникативные:

- умение формулировать правильные вопросы; умение строить речевыевысказывания;
- умение донести свою позицию до окружающих: оформлять свои мысли вустной и письменной речи с учётом своих учебных и жизненных речевых ситуаций;
- умение высказывать свою точку зрения и пытаться её обосновать, приводяаргументы;
- умение слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения.

.

.

Календарно-тематическое планирование курса «Робототехника»

Поурочное планирование 8 класс

,	№	Тема урока	Количес тво часов
п/п			тво часов
	1	. Вводное занятие «Образовательная робототехника с конструктором КЛИК»	1
	2.	Конструктор КЛИК и его программное обеспечение	1
	3.	Сборка робота на свободную тему. Демонстрация	1
	4.	Изучение моторов и датчиков	1
	5.	Изучение и сборка конструкций с моторами	1
	6.	Изучение и сборка конструкций с датчиком	1
		расстояния	
	7.	Изучение и сборка конструкций с датчиком цвета	1
	8.	Конструирование простого робота по инструкции	1
	9.	Создание простых программ через меню контроллера	1
	10		1
•		простейших	
		программ для робота по инструкции	
	11	Написание программ для движения робота по	1
•		образцу. Запуск	
		и отладка программ	
	12	• •	1
•		робота	
	13	Написание собственной программы для движения	1
•		робота	
	14	Написание собственной программы для движения	1
•		робота	
	15	Подключение и управление сервопривода	1
•	16	Подключение и управление HC-SR04	1
•	17	Подключение и управление датчиком линии.	1
•		Движение по	
		линии	
	18		
•		Движение по	
		линии	
	19	Объезд препятствия	1
•	20	Следование за предметом	1
•	21	Подключение и управление IR приёмником	1

. 22	Подключение и управление IR приёмником	
23	Манипулятор	1
24	Манипулятор	1
. 25	Роботанк	1
. 26	Роботанк	1
. 27	Роботанк	1
. 28	Робот Муравей	1
. 29	Робот Муравей	1
. 30	Букабот	1
31	Букабот	1
. 32	Двуногий робот	1
. 33	Двуногий робот	1
. 34	Итоговый урок	1

Поурочное планирование 9 класс

	No	Тема урока	Количес
Π/Π			тво часов
	1.	Лабораторная работа № 1. Светодиод.	1
	2.	Лабораторная работа № 1. Светодиод.	1
	3.	Лабораторная работа № 2. Управляемый	1
		«программно»	
		светодиод.	
	4.	Лабораторная работа № 2. Управляемый	1
		«программно»	
		светодиод.	
	5.	Лабораторная работа № 3. Управляемый «вручную»	1
		светодиод.	
	6.	Лабораторная работа № 3. Управляемый «вручную»	1
		светодиод.	
	7.	Лабораторная работа № 4. Пьезодинамик.	1

8.	Лабораторная работа № 4. Пьезодинамик.	1
9.	Лабораторная работа № 5. Фоторезистор.	1
10		1
11	Лабораторная работа № 6. Светодиодная сборка.	1
12	Лабораторная работа № 6. Светодиодная сборка.	1
13	Лабораторная работа № 7. Тактовая кнопка.	1
14	Лабораторная работа № 7. Тактовая кнопка	1
15	Лабораторная работа № 8. Синтезатор.	1
16	Лабораторная работа № 8. Синтезатор.	1
17	Лабораторная работа № 9.Дребезг контактов.	1
18	Лабораторная работа № 9.Дребезг контактов	
19	Лабораторная работа № 10. Семисегментный индикатор	1
20	• •	1
20	индикатор	1
21	Лабораторная работа № 11. Термометр.	1
22	Лабораторная работа № 11. Термометр	
23	Лабораторная работа № 12. Передача данных на ПК.	1
24	Лабораторная работа № 12. Передача данных на ПК.	1
25	Лабораторная работа № 13 Передача данных с ПК.	1
26	Лабораторная работа № 13 Передача данных с ПК.	1
27	Лабораторная работа № 14. LCD Дисплей	1
28	Лабораторная работа № 14. LCD Дисплей	1
29	Лабораторная работа № 15. Сервопривод MG966	1
30	Лабораторная работа № 15. Сервопривод MG966	1
31	Программирование на свободную тему	1
Ľ		

. 32	Программирование на свободную тему	1
. 33	Программирование на свободную тему	1
. 34	Подведение итогов.	1

ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ.

Участие учащихся в выставках, показательных выступлениях, соревнованиях.

Учащиеся должны:

ЗНАТЬ:

- правила безопасной работы с компьютерами и робототехническим конструктором;
- основные элементы конструктора;
- понятия: центр тяжести, трение, скорость, масса, крутящий момент, мощность;
- виды робототехнических механизмов, их конструкции;
- ключевые компетенции механического проектирования;
- конструктивные особенности различных роботов;
- виды алгоритмов;
- основные операторы языка программирования RobotC;
- структуру программы языка программирования RobotC;

УМЕТЬ:

- работать со схемами, с литературой, с журналами, с каталогами, в интернете (изучать и обрабатывать информацию);
- создавать роботов на основе технической документации;
- использовать термины: исполнитель, алгоритм, программа;
- определять результат выполнения заданного алгоритма;
- составлять алгоритмы управления роботами, записывать их в виде программ на языке программирования RobotC;
- самостоятельно решать технические задачи в процессе конструирования роботов
- применять полученные знания, приемы и опыт конструирования с использованием специальных элементов и т.д
- создавать действующие модели роботов на основе конструктора;
- корректировать программы при необходимости;
- демонстрировать технические возможности роботов.

РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ РЕАЛИЗАЦИИ ПРОГРАММЫ

Для реализации программы необходимо:

- Образовательный набор электронике, электромеханике И микропроцессорной технике «Конструктор программируемых моделей инженерных систем. Расширенный набор" предназначен ДЛЯ проведения учебных занятий по электронике и схемотехнике с целью изучения наиболее распространенной элементной базы, применяемой для инженерно-технического творчества учащихся и разработки учебных моделей роботов. Набор позволяет проведение учебных занятий ПО изучению основ мехатроники И робототехники, применения базовых электроники практического элементов схемотехники, а также наиболее распространенной элементной базы и основных технических решений, применяемых при проектировании и прототипировании различных инженерных, кибернетических И Данный встраиваемых систем. образовательный программируемых комплект "Конструктор моделей инженерных систем. Расширенный" предназначен для разработки программируемых моделей на основе многофункционального контроллера типа «Arduino», совместимого с периферийными устройствами и модулями Arduino Mega2560, расширения a также адаптированного разработки мехатронных систем большим числом мобильных и манипуляционных роботов, оснащенных системой технического зрения.
- Компьютер с установленным ПО (Операционная система Windows, офисный пакет, архиватор, браузер).

Кроме того, в кабинете для занятий должны быть:

- принтер на рабочем месте учителя;
- проектор на рабочем месте учителя;
- сканер на рабочем месте учителя
- доступ к глобальной сети Интернет для учителя и учащихся.